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Fig. 1. Diagram of the fast-start chamber used to measure sprint performance in Atlantic cod(Gadus morhua): (a) top view (b) side
view. All dimensions are in meters.

plexiglass window(total of 30 detectors). This
separation distance assured that a beam would be
broken with the first 2 cm of a fish that crossed it
(for the size and shape of cod we used). Smaller
fish would require a greater density of detectors.
These detectors and lasers are produced commer-
cially for various applications and are therefore
readily available and inexpensive.

2.1.2. Operational details
The light detection and computer timing circuit-

ry for an individual detector of a bank is shown
in Fig. 2 and a flow diagram describing the
software protocol is illustrated in Fig. 3. In sum-
mary, when activated by light, the photodarlington
detector signal is amplified and triggers a 2N2222
transistor which puts out a 5 V TTL signal to 1
of 8 inputs into an 8-input NAND Gate(7430).
When all six detectors in a bank are saturated, the
NAND gate output is low(-0.3 V). However, if
one of the beams is broken, the corresponding
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Fig. 2. Diagram of the electronic circuit used to indicate disruption of a laser beam. Note the section of the circuit replicated for each
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Fig. 3. Flow diagram of software protocol used to detect hard-
ware laser beam breakage and timing between banks. Software
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Fig. 4. Swimming speed of an individual Atlantic cod as it burst through the 2.2 m runway after tactile stimulation. Figures show three
consecutive trials of the same animal run in a single day.(a) Swimming speed as a function of elapsed time; the equation and correlation
coefficient of the least squares linear regression describing each line are included.(b) The same trials depicted in Fig. 4a with swimming
speed plotted as a function of distance traversed; the equation and correlation coefficient of the best-fit power function are included.

the relationship of time versus swimming speed
was fit with least-squares linear regressions, the
lines and equations of which are presented in Fig.
4a for a single animal swum repeatedly, thrice in
the same day. When swimming speed is plotted as
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Fig. 5. Swimming speed of 6 additional Atlantic cod as they burst through the 2.2 m runway after tactile stimulation. The line for each
fish represents the best of three trials, all performed in a single day, for each individual. Swimming speed is plotted as a function of
elapsed time; the equation and correlation coefficient of the least squares linear regression describing each line are included.

Fig. 6. Acceleration of Atlantic cod as they burst through the 2.2 m runway after tactile stimulation. The equation and correlation
coefficient of the ‘best-fit’ power function for each curve are included. Acceleration curves are for the same three consecutive trials
depicted in Fig. 4.

through the remainder of the chamber while Fish
�6 had the slowest start of any fish, but had the
greatest rate of acceleration(approximately 2
m s ) throughout the remainder of the chambery2

(Fig. 5).

The fish depicted in Fig. 4 was intermediate in
performance between ‘fish 6’ and the three similar-
performing fish (1, 4 and 5). These results can
also be seen numerically by examining the equa-
tions; the slope of the line is the acceleration
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tions in performance the second time(Fig. 7).
Data points at the extreme of a linear regression
have a disproportionate effect on the location of
the ‘best fit’ line (Draper and Smith, 1981). Since
nine of the fish had a faster second trial, seven
fish had a faster first trial, and one fish had
identical trials, we feel safe in concluding that
there was no learning effect nor did the fish’s
health deteriorate over the 3-month period between
trials.

3.1.4. Method advantages
The major advantage of this technique is that it

allows the investigator to obtain acceleration and
swimming speed data on a large number of fish
under natural light levels fairly quickly. The rate
at which animals can be processed can be increased
by making the chamber bi-directional or by reduc-
ing acclimation time. Although filming fast-starts
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Fig. 8. Swimming speed at fatigue for the 8 Atlantic cod used to initially develop the constant acceleration protocol(U of Reidyburst

et al., 2000) recorded in each of two separate trials performed approximately 1 month apart. The equation of the least squares linear
regression(dark line) for all eight fish and the same equation with the two worst performing fish removed(both of which had substantial
improvement on a second trial) and respective correlation coefficients are included. The lighter line is the line of perfect identity.

3.3. U procedure modified for a small, loticcrit

cyprinid

The modifiedU procedure we employed tocrit

gauge performance of blacknose dace was very
repeatable(Fig. 9). The line relating second per-
formance to first was highly significant by both
least squares(Fs62.5,P-0.0001) and non-para-
metric techniques(Spearman rank orderrs0.771;
Ps0.001). There was also substantial inter-indi-
vidual variance in performance among dace that
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